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Nonexponential dynamic relaxation of randomly branched polymers in good solvents

Josh Kemp and Zheng Yu Chen
Guelph-Waterloo Program for Graduate Work in Physics and Department of Physics, University of Waterloo,

Waterloo, Ontario, Canada N2L 3G1
~Received 6 August 1997!

Monte Carlo simulations were carried out to study the dynamics of randomly branched polymers in good
solvents. Two types of time scales were observed: fast relaxation times corresponding to the internal contrac-
tion motions and slower relaxation times corresponding to the overall rotational motions of the polymers. The
former is associated with autocorrelation functions that exhibit nonexponential decay behavior, a signature of
the dynamics of random systems. The latter is associated with the usual exponential decay behavior, typical of
linear or regularly branched polymers.@S1063-651X~97!04912-X#

PACS number~s!: 61.25.Hq, 61.20.Ja, 64.60.Ht
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A wide range of naturally occurring and artificially syn
thesized polymers have randomly branched structures@1,2#
~see Fig. 1 for a sketch!. The dynamic relaxations of variou
autocorrelation functions are important measurements u
to understand the microscopic motion of polymers under
ferent physical conditions. For polymers of any structu
moving in a good solvent, the overall motion of the ent
polymer can be quantitatively described by the diffusive m
tion of an object of radiusS, where S is a characteristic
radius of the polymer. The internal relaxation modes, c
nected to the internal degrees of freedom, are closely c
nected to the structure of the molecule and are usually
ferent from one type of polymer to another. The randomn
in the structure of randomly branched polymers produces
interesting yet complex feature: The autocorrelation fu
tions associated with internal degrees of freedom could
hibit, as observed in the current study, a nonexponentia
laxation that is characteristic of many other random
disordered systems such as spin glasses@3# and randomly
sequenced, proteinlike polymers@4#. Despite current interes
in randomly branched polymers~RBP’s! @1,2,5–9#, the dy-
namics of such molecules is not completely understood
this paper we present our recent results on the nume
simulations of the Rouse dynamics of RBP’s.

Bearing some similarities to RBP’s are regularly branch
polymers such as star and comblike polymers: All have ov
all spherical conformation and more than one relaxat
time. Grest and Murat studied the dynamics off -arm star
polymers numerically by implementing a molecula
dynamics~MD! simulation method@10#. In particular, they
have proposed characterizing the dynamic relaxation pro
by using three different time scales: the elastic relaxat
time tel , rotational relaxation timet rot , and entanglemen
relaxation timetent. These relaxation times are expected
be short (tel), long (t rot), and ultralong (tent) due to the
different physical mechanisms involved. The MD simu
tions produced numerical results for observing the ela
time scale, but did not yield enough statistics for observ
the other two time scales for which a scaling argumen
available. Su, Denny, and Kovac studied the dynamics
star polymers by using the bond-fluctuation Monte Ca
~MC! model, focusing mainly on the relaxation phenome
of shape fluctuations@11#. The elastic relaxation times wer
561063-651X/97/56~6!/7017~6!/$10.00
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also determined and compared with scaling laws. In addit
they tried to analyze the simulation data for the overall ro
tion of the molecules. Unfortunately, the time duration of t
observation was not long enough for a conclusive deter
nation of the relaxation behavior associated with the ro
tional motion. In this study, we examined the dynamic rela
ations of RBP’s at both short- and long-time scales.

For regularly branched or linear polymers, the analy
calculation of various relaxation times is strongly related
the identification of the primary normal-mode vibrations
the molecule in theu condition@12#. As early as 1959, Zimm
and Kilb studied the normal mode relaxation time of s
polymers in theu condition@13#. Recently, this has also bee
done for star-burst polymers by Cai and Chen@14#. The in-
troduction of the excluded-volume interaction may sign
cantly alter the scaling relation between, for example,t and
the total number of monomersN, but the newt’s can always
be traced back to theiru condition counterpart. There is n
previous theoretical determination of the relaxation pheno
ena in RBP’s, even for the simplest case of a phantom p
mer in theu condition. The main difficulty is conceptua
How does one identify the normal modes for a random
structured object? Computer simulations, however, can av
such difficulties by directly observing various autocorre
tion functions numerically.

FIG. 1. Sketch of a typical randomly branched polymer.
7017 © 1997 The American Physical Society
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7018 56JOSH KEMP AND ZHENG YU CHEN
The goal of this study is to examine the dynamics
annealed RBP’s containing various numbers of monom
and to find the relevant scaling behavior. The simulation
the dynamics of these structures has proved particularly c
lenging as the dynamic behavior of each polymer depend
its particular branching structure. In principle, for a givenN,
one would need to determine the autocorrelation functi
for many uncorrelated sample structures and determine
structurally averaged autocorrelation function based on
average over these structures. We have used the sim
treatment of choosing only five independent representa
structures for eachN in our calculations.

The importance of the random structure to the static c
formational properties of RBP’s has been emphasized
cently @5,6#. For the presentation of the dynamical propert
below, we note that the mean-square radius of gyra
obeys a scaling laŵS2&}N2n, wheren50.5 for annealed
polymers@7,9# andn50.45 for quenched polymers@6#. Be-
cause of the smaller gyration exponentn compared to its
linear-polymer counterpart (n linear'0.6), randomly branched
polymers are much denser than linear polymers. The syst
studied in this paper all have annealed structures.

The bond-fluctuation MC dynamics has been shown
effectively reflect the Rouse dynamics of actual systems@15#
when the hydrodynamic interactions between differ
monomers are ignored~the draining limit!. Since the volume
interaction is automatically embedded in the bond fluctuat
model, this method also qualitatively reproduces the phys
environment of polymers in a good solvent.

We used an eight-site, three-dimensional bond-fluctua
algorithm to simulate the Rouse dynamics of the polyme
The algorithm was originally introduced by Carmenson a
Kremer for simulating the dynamics of linear polymers; th
also showed that the MC dynamics obtained in this w
effectively mimic the true long-time molecular dynamic
Since a background cubic lattice system is adopted in
model, the faster integer manipulation of the algorith
makes it more favorable in comparison with other mode
The model assumes that each monomer occupies one
on the lattice and can be moved unit lengths along the
lattice directions. Moves are accepted when the bonds j
ing the monomers have lengths belonging to the setl 52,
A5,A6,3,A10 and when monomers do not overlap. T
former constraint ensures that bonds will not cross e
other, as shown by Carmenson and Kremer, while the la
accounts for the excluded-volume interaction between mo
mers. Interested readers are referred to Ref.@15# for a de-
tailed description of the bond-fluctuation model.

The initial branching structures were built through an e
tension of the bond fluctuation model to include addition
cutting and pasting steps to deal with the branching str
tures of annealed molecules. The procedure is similar to
used in the lattice-tree model of van Rensburg and Madra
their earlier study of the conformation properties of ra
domly branched polymers@7#. Starting from a linear chain o
N monomers, we chose a free end at random and detach
from the rest. The bond was then reattached to a random
located on the main polymer so that the new vector conn
ing the new junction and the pasted monomer had one of
lengths specified above. If the repositioning resulted in t
overlapping monomers or a reattachment to an exis
f
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branching point, the move was rejected. This process
continued until an equilibrium state was obtained. From
initial straight-line configuration, a relaxed state could typ
cally be reached within 5000 MC steps for even the larg
structures of 200 monomers considered in this paper. A
equilibration, positions of the monomers and the branch
structure for five sample molecules were then recorded
intervals of 105 MC steps. This procedure allowed for th
change of conformational and structural configurations
fore the next sample structure was adopted and ensured
structures were independent.

To confirm that the above algorithm indeed produces
desired branched structure in the lattice environment,
have examined scaling behavior of the radius of gyration
other conformation properties. As shown analytically by P
risi and Sourlas@9# and later confirmed numerically by va
Rensburg and Madras@7# and Cui and Chen@6#, the mean-
square radius of gyration of an annealed randomly branc
polymer should have the scaling behavior

^S2&[
1

N (
i 51

N

~RW i2RW c!
2;N2n, ~1!

wheren51
2 and RW c is the center of mass. As shown by th

plot in Fig. 2, the mean-square radius of gyration^S2& dis-
plays the power-law behavior cited above with expon
n50.4960.01, calculated from the last four points in th
curve, which is consistent with these previous studies. N
that the relationship̂S2&'N is the same as for linear poly
mers in theu condition; the similarity is coincidental. We
have also included in Table I other structral properties, s
as the average number of branching monomersn3 and the
average number of ‘‘spacer’’ monomers between t
branching monomersl . These data are comparable to t
results from our earlier study@6# by using an off-lattice bead
bond algorithm for the case when the bead size equals
bond length.

To simulate the Rouse dynamics of the molecules,
started with five sample structures for eachN constructed
earlier. The branching structures were completely frozen

FIG. 2. Radius of gyration of randomly branched polymers^S2&
vs the total number of monomersN. The straight line represents th
asymptotic scaling bahavior in Eq.~1! with n50.4960.1.
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56 7019NONEXPONENTIAL DYNAMIC RELAXATION OF . . .
that every move only involved the displacement of a mo
mer chosen at random to one of the six possible neighbo
sites according to the bond-fluctuation model@12#. The over-
all dynamics of these structures can be characterized by
ous time scales. The first is related to the translational
rotational diffusion of the entire polymer in the solvent m
dium ~a long-time relaxation process!. We also found that on
a shorter time scale the polymers deform and reorganize
shape as the monomers move. This motion resembles
radial elastic deformation of a spherical elastic object. T
autocorrelation function displays a nonexponential decay
contrast, the internal relaxation of regularly branched po
mers is usually associated with a simple exponential de
@10,11#.

Throughout this paper, all measures of time are given
terms of MC steps, where one MC step consists of mov
each ofN randomly chosen monomers once. The ideal tre
ment for determining an autocorrelation function would be
divide the simulation into many segments; within each s
ment one would observe the system for a substantial am
of time, during which all relaxation processes would ha
time to complete. Then one would treat the starting point
each of these segments as if they were different membe
a statistical ensemble; the ensemble average~denoted bŷ &
below! would be performed over all of these segments of
simulation. In reality, however, due to limited computation
time, we used an overlapping method to perform the
semble average. The overlap is, however, sufficiently sm
so that correlations between frames are not significant. T
II shows the parameters used to calculate the autocorrela
function for each sample structure. The second column
resents the total MC steps used for each run, in units
106 MC steps. The third column represents the time inter
after which a new configuration is considered for the e
semble average. The starting points of the overlapping s
ments were separated by time intervals that were longer
the elastic relaxation times to be discussed below. The
column represents the time duration for which the autoc
relation functions were observed for their time dependen

TABLE I. Structurally averaged static properties.

N ^S2& n3 l

11 15.4 2.15
26 37.3 6.22 1.52
51 72.6 13.0 1.77

101 141.9 26.5 1.87
151 210.3 40.02 1.92
201 278.6 53.5 1.82

TABLE II. Measurement parameters.

N
Total

MC steps
Time

interval
Time duration
of observation

11 100M 2500 25 000
26 100M 5000 25 000
51 200M 20 000 100 000

101 500M 50 000 200 000
-
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The calculations required for this study are substant
For example, since each sample structure requires
3108 MC steps for anN5101 molecule, the total time use
to calculate the correlation functions for the five structur
amounts to 253108 MC steps. The actual calculations wer
performed on a 175-MHz Silicon Graphics INDY worksta
tion.

The translational motion of the polymer is easily chara
terized through a direct measurement of the diffusion r
associated with the correlation function of the center-of-m

vectorRW c ,

Cdiff~ t !5^@RW c~ t !2RW c~0!#2&[Dt. ~2!

The last step defines the diffusion constantD. Qualitatively,
we expect that the diffusion constant displays the charac
istic relationD}1/N of a Rouse model. Our data agree wi
this scaling relation. To measure the rotational relaxat
time, we used the correlation function of the end-to-end v

tor RW e ,

Crot~ t !5

(
i

M

^RW i~ t !•RW i~0!&

(
i

M

^RW i
2&

, ~3!

whereRW i is a vector that starts from a prior chosen extern
monomer to another external monomer. The sum is ta
over all other external monomers, withM the number of free
external ends. Figure 3 displays the rotational correlat
functionCrot(t) for N551, plotted against a semilogarithmi
scale on the left. There is a short period of nonexponen
behavior in the initial portion of the curve, which has a tim
scale comparable to the elastic time scale to be discus
below. We believe that this is caused by a direct coupling
the internal relaxation of the structure that defines t
shorter-time scales. The curve to the right scale in Fig
shows an overlay of the correlation function for the chan
in the magnitude ofS2 for N551, clearly demonstrating the

FIG. 3. Autocorrelation functionCrot(t) vs t for N551 on a
semilogarithmic plot~to the left scale!. Note that the long-time
behavior is essentially linear. An overlay ofCS2(t) for N551 is
also included~to the right scale!.
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7020 56JOSH KEMP AND ZHENG YU CHEN
relation between the nonexponential portion of the rotat
curve and the internal relaxation of the structure. The cro
over to the long-time exponential behavior occurs after
internal dynamic relaxation completes. Note that the ini
portion of the relaxation curve might mislead the analy
One could, for example, try to identify the initial portion o
the Crot(t) curve with a stretched exponential decay by m
take. In order to find the true relaxation behavior, we o
servedCrot(t) until the long-time behavior clearly displaye
a dominating simple exponential behavior. The rotatio
process of the whole polymer is always accompanied by
internal reorganization of the monomers. It is not until t
process of reorganization has proceeded sufficiently that
relations from activities such as the twisting and untwist
of free ends become insignificant and the expected expo
tial decay behavior is observed. The relaxation time was
culated from the exponential part according to

ln@Crot~ t !#5const2S 1

t rot
D t. ~4!

A very simple physical picture can be proposed to rel
the rotational time to the diffusion constant@10#. Since the
rotational relaxation time should be approximately equa
the time required for the polymer to diffuse through a d
tance of its own diameter, characterized by the radius
gyrationS, we can estimate the rotational relaxation time

t rot;S2/D;S2N;N2. ~5!

We have listed in columns 3 and 4 of Table III the com
nationst rot /N

2 andt rot /(NS2). Approaching a constant fo
largeN, these data confirm the expected scaling relation
Eq. ~5!. It can also be seen that the smaller polymersN
511) produce a relatively smallt rot /N

2 compared to the
other values in the third column. Since the scaling relat
S2;N does not hold for smaller polymers, the combinati
S2N is a better estimate fort rot , as seen in the fourth colum
of Table III.

The shorter-time scale dynamics of the polymer was
other phenomenon of interest in this numerical study. In
der to obtain a complete picture of the relaxation proces
different components in the molecule, three aspects of
polymer were examined. The most important one is a m
sure of the relaxation of the squared radius of gyration

CS2~ t !5
^S2~ t !S2~0!&2^S2&2

^S4&2^S2&2 , ~6!

which provides a measure of the internal deformation of
entire structure. To gain insight into the role that branch
monomers play in the internal dynamics of the polymer,

TABLE III. Rotational relaxation parameters.

N t rot t rot /N
2 t rot /NS2

11 930694 7.761 3961
26 61006250 9.060.5 3862
51 28 00062800 10.861 4264

101 110 000629 000 10.863 41610
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introduce a correlation function that measures the chang
the radius of gyration of the branching monomersSb ,

Cb~ t !5
^Sb

2~ t !Sb
2~0!&2^Sb

2&2

^Sb
4&2^Sb

2&2 , ~7!

where

Sb
2[

1

n3
(
i 51

n3

~RW i
b2RW c!

2 ~8!

andRW i
b is the position of thei th branching point andn3 the

number of branching points of a given configuration. T
third autocorrelation function is for the change in the squ

of the magnitude of the end-to-end vectorRW e ,

Ce~ t !5
^Re

2~ t !Re
2~0!&2^Re

2&2

^Re
4&2^Re

2&2 , ~9!

where

FIG. 4. Typical double-logarithmic plot for the correlation fun
tion of S2 @Eq. ~6!#, where log(t) means log10(t).

FIG. 5. Typical double-logarithmic plot of the correlation fun
tion of Sb

2 @Eq. ~7!#, where log(t) means log10(t).
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Re
25

1

M (
i 51

M

~RW i
end2RW 0

end!2 ~10!

and RW i
end is the position vector of thei th free end of the

polymer,RW 0
end the position vector of the center of mass of t

M external ends, andM the number of free ends. This func
tion provides a measurement of the relaxation process a
ciated with the linear segments between the free ends.

These correlation functions reflecting internal dynam
are nonexponential in nature. In particular we propose fitt
the correlation functions using stretched exponential dec
ing functions

C~ t !5expF2S t

t D aG . ~11!

This assumption is based on the observations of Figs. 4
which show that the correlation functionsCS2, Cb , andCe
in double logarithmic plots display linear behavior. The r
sults of the data analysis are presented in Table IV. To
ther stress that the observed autocorrelation function is
nonexponential nature, we have included in Fig. 4 an in
that displays a typicalCS2(t) curve (N551) on a semiloga-
rithmic scale.

The short relaxation time and the stretching expone
were determined from a least-squares fit of the simula
data in Figs. 4–6 to Eq.~11!. Thea’s for CS2(t) andCb(t)
have similar values, ranging from 0.62 to 0.95 depending
the particular branching structure. The correlation funct
for the end monomersCe(t), however, decays much faste
with a smaller stretching exponenta ranging from 0.50 to

FIG. 6. Typical double-logarithmic plot of the correlation fun
tion of Re

2 @Eq. ~9!#, where log(t) means log10(t).
o-
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0.82. The structurally averaged decay times for these th
correlation functions are also listed in Table IV. The shor
decay times forCe(t) reflect the fact that external monome
move more freely with fewer constraints. The overall elas
relaxation of the polymer involves the combined effects
the free ends, branched monomers, and linear parts betw
the branched monomers. Constrained by extra bonding,
branching monomers are less mobile, having the slowes
ternal relaxation process among the three. Thus the re
ation process ofS2 is dominated mainly by that of the
branching monomers.

In an attempt to determine possible scaling relations,
have plotted the short relaxation times vs the number
monomers in Fig. 7 using a double-logarithmic scale. It a
pears from this plot that

tS2}tb}N~360.2!. ~12!

Since theN used here is not sufficiently large, we are unab
to make a conclusive estimate for the corresponding sca
exponent. The accuracy of these data points is further h
pered by the determination of thea exponents, which al-
ready carry relatively large error bars. These statistical er
were estimated from combining the original statistical err
associated with the fitting of the double exponential curve
each given structure and the statistical erorrs associated
the structral averaging.

The scaling behavior for the short-time scale dynam
observed in this study is not fully understood. Though t
simulation data were fitted to the stretched exponential fu
tion in Eq. ~11!, the actual time dependence of these cor

FIG. 7. Elastic relaxation timestS2 ~circles!, tb ~squares!, and
te ~diamonds! as functions ofN, averaged over the five represe
tative structures.
TABLE IV. Elastic relaxation parameters.

N tS2 aS2 tb ab te ae

11 3763 0.62–0.83 2262 0.70–0.82
26 9268 0.70–0.90 130610 0.77–0.95 2664 0.51–0.70
51 6906130 0.72–0.92 520680 0.69–0.88 2764 0.50–0.60

101 50006500 0.82–0.90 91006500 0.80–0.91 250660 0.55–0.61
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7022 56JOSH KEMP AND ZHENG YU CHEN
lation functions is still debatable. It is therefore desirable
analyze the relaxation process in more detail by an ana
treatment. Even a calculation of the dynamical behavior
randomly branched polymers in theu condition would
clarify the underlying physics: The nonexponential behav
would already show up due to the random distribution of
segmental lengths.

A number of other randomly disordered systems also
play nonexponential relaxation dynamics. The autocorre
tion functions of these systems were also fitted to
stretched exponential formula. Ogielski has conducted an
tensive investigation of the nonexponential nature of the
tocorrelation function of the order parameter for spin-gla
systems. The stretching exponent was shown to have var
values smaller than unity, depending on the temperature@3#.
A more closely related example is probably the dynamics
a linear heteropolymer chain, which relaxes from a ne
equilibrium state to a ‘‘native’’ state according to a stretc
ing exponent ranging from 0.38 to 0.54@4#.

There has been a great deal of research~see, for example
references in Ref.@1#! into the dynamics of dilute sol solu
tions, which are systems that contain polydisperse~i.e., non-
uniform distribution ofN! RBP’s @1#. However, there has
been few experiments on the dynamics of a very dilute R
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solution, in which the dynamics of a single RBP would
important. A NMR measurement, for example, could be u
ful to probe some of the nonexponential relaxation proces
described in this paper.

In summary, the bond-fluctuation algorithm has proved
be an ideal model for recreating the Rouse dynamics
RBP’s, simulating the conformational properties and t
long-time scale dynamics that can be understood from o
theoretical treatments. We have observed in the simula
that the scaling relationshipsD}1/N and t rot}N2 are valid
for randomly branched polymers up toN5101. There are
two important types of time scales. The long, rotational
laxation time is shown to obey the scaling behaviort}N2.
The results also show that the internal dynamics are non
ponential and are much faster, as demonstrated by the a
correlation functions for the radius of gyration and t
squared end-end distance. It also appears that these co
tion functions may be represented by stretched expone
functions, with stretching exponents ranging from 0.50
0.95.
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